Improving Transferability of Representations via Augmentation-Aware Self-Supervision

Hankook Lee¹, Kibok Lee²³, Kimin Lee⁴, Honglak Lee²⁵, Jinwoo Shin¹ ¹KAIST, ²University of Michigan, ³Amazon Web Services, ⁴University of California, Berkeley, ⁵LG AI Research

TL; DR. Learning augmentation-aware information by predicting the difference between two augmented samples improves the transferability of representations for various downstream tasks.

Background & Motivation

Self-supervised learning (SSL) learns representations via a pretext task that requires to predict self-supervision constructed from only input signals. Recent SSL methods often aim at learning invariance to data augmentations

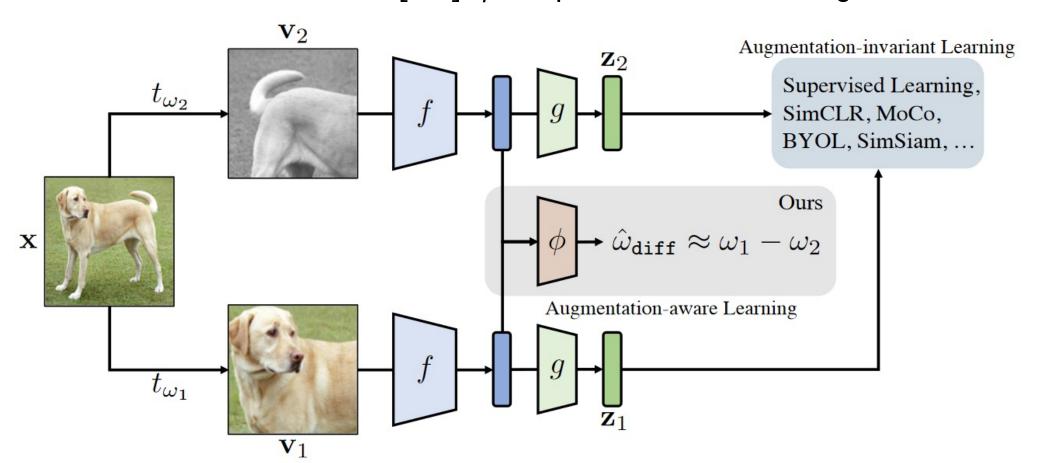
- Contrastive methods (e.g., MoCo [1], SimCLR [2])
- Negative-free methods (e.g., BYOL [3], SimSiam [4])
- Clustering-based methods (e.g., SwAV [5])

Question: is learning invariance to a given set of augmentations always beneficial to representation learning? To answer this question,

- Pretrain ResNet-18 on STL10 with varying color jittering strength s.
- Compute mutual information between the learned representation Z=f(x) and color information C(x) encoded by color histograms.
- Transfer the learned representation to color-sensitive downstream tasks.

Observations:

- Stronger color augmentations ⇒ color-relevant information loss
- Less color information ⇒ performance drop in color-sensitive tasks

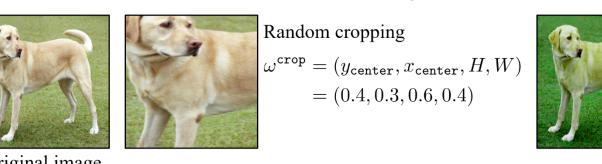

Research Question: how to prevent the information loss comes from learning the invariance?

Summary of Contribution

- For learning augmentation-aware information, we suggest to optimize an auxiliary self-supervised loss (AugSelf) that learns to predict difference between augmentation parameters of two randomly augmented samples.
- Extensive experiments demonstrate that (1) **AugSelf** can improve learned representations' transferability for various downstream tasks, and also (2) **AugSelf** can be easily incorporated with recent SSL methods with a negligible additional training cost.

Method

Notation. x is an original input image. t_{ω} is an augmentation function parameterized by ω . $\mathbf{v} = t_{\omega}(\mathbf{x})$ is the augmented sample of \mathbf{x} by t_{ω} . f is a CNN feature extractor such as ResNet. g is a projection MLP that is widely used in recent SSL methods [1-5]. ϕ is a prediction MLP for AugSelf.


For learning augmentation-aware information, we learn to predict the difference between two augmented samples. Formally, auxiliary augmentation-aware self-supervised loss (AugSelf) is defined by

$$\mathcal{L}_{\text{AugSelf}}(\mathbf{x}, \omega_1, \omega_2; \theta) = \sum_{\text{aug} \in \mathcal{A}_{\text{AugSelf}}} \mathcal{L}_{\text{aug}} \left(\phi_{\theta}^{\text{aug}}(f_{\theta}(\mathbf{v}_1), f_{\theta}(\mathbf{v}_2)), \omega_{\text{diff}}^{\text{aug}} \right)$$
 where $\omega_{\text{diff}}^{\text{aug}}$ is the difference between augmentation-specific parameters.

Benefits of AugSelf: it can ...

- preserve augmentation-aware information for downstream tasks
- be easily incorporated with [1-5] thanks to its self-supervision design

In this work, we mainly use $\mathcal{A}_{AugSelf} = \{crop, color_jitter\}$ and MSE for \mathcal{L}_{aug} .

References

- [1] He et al., Momentum Contrast for Unsupervised Visual Representation Learning, CVPR 2020
- [2] Chen et al., A Simple Framework for Contrastive Learning of Visual Representations, ICML 2020
- [3] Grill et al., Bootstrap your own latent: A new approach to self-supervised Learning, 2020
- [4] Chen & He, Exploring Simple Siamese Representation Learning, 2020
- [5] Caron et al., Unsupervised Learning of Visual Features by Contrasting Cluster Assignments, NIPS 2020

Experiment

SelfAug improves the transferability of representations in various standard (first table) and few-shot (second table) downstream classification tasks

Supervised	86.16	62.70	53.89	52.91	73.50	76.09	77.53 77.47	30.61	36.78	61.91	40.59
+ AugSelf	86.06	63.77	55.84	54.63	74.81	78.22		31.26	38.02	62.07	41.49
MoCo v2	84.60	61.60	59.37	61.64	70.08	82.43	77.25	33.86	41.21 39.47	64.47	46.50
+ AugSelf	85.26	63.90	60.78	63.36	73.46	85.70	78.93	37.35		66.22	48.52
SimSiam	86.89	66.33	61.48	65.75	74.69	88.06	84.13	48.20 47.52	48.63	65.11	50.60
+ AugSelf	88.80	70.27	65.63	67.76	76.34	90.70	85.30		49.76	67.29	52.28
ImageNet100-pretrained ResNet-50											
Method	CIFAR10	CIFAR100	Food	MIT67	Pets	Flowers	Caltech101	Cars	Aircraft	DTD	SUN39

	FC	100	CUI	3200	Plant Disease			
Method	(5, 1)	(5, 5)	(5, 1)	(5, 5)	(5, 1)	(5, 5)		
ImageNet100-pretrained ResNet-50								
SimSiam	36.19±0.36	50.36±0.38	45.56±0.47	62.48±0.48	75.72±0.46	89.94±0.31		
+ AugSelf (ours)	39.37±0.40	55.27±0.38	48.08±0.47	66.27±0.46	77.93 ± 0.46	91.52±0.29		
MoCo v2	31.67±0.33	43.88±0.38	41.67±0.47	56.92±0.47	65.73±0.49	84.98±0.36		
+ AugSelf (ours)	35.02±0.36	48.77±0.39	44.17 ±0.48	57.35±0.48	71.80 ± 0.4 7	87.81 ±0.33		
Supervised	33.15±0.33	46.59±0.37	46.57±0.48	63.69±0.46	68.95±0.47	88.77±0.30		
+ AugSelf (ours)	34.70 ±0.35	48.89±0.38	47.58±0.48	65.31±0.45	70.82 ±0.46	89.77 ±0.29		

SelfAug can be incorporated with various SSL methods (STL10 pretraining)

Method	AugSelf (ours)	STL10	CIFAR10	CIFAR100	Food	MIT67	Pets	Flowers
SimCLR [2]		84.87	78.93	48.94	31.97	36.82	43.18	56.20
SIIICLK [2]	✓	84.99	80.92	53.64	36.21	40.62	46.51	64.31
BYOL [12]		86.73	82.66	55.94	37.30	42.78	50.21	66.89
B10L [12]	✓	86.79	83.60	59.66	42.89	46.17	52.45	74.07
SWAV [11]		82.21	81.60	52.00	29.78	36.69	37.68	53.01
SWAV [11]	✓	82.57	82.00	55.10	33.16	39.13	40.74	61.69

Object localization (blue is ground-truth & red is prediction)

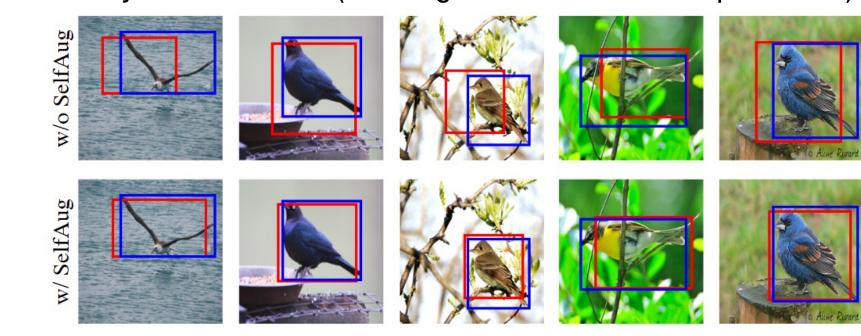


Image retrieval: SimSiam (left) vs SimSiam+AugSelf (right, ours)

