# RetCL: A Selection-based Approach for Retrosynthesis via Contrastive Learning





Hankook Lee<sup>1\*</sup>, Sungsoo Ahn<sup>2</sup>, Seung-Woo Seo<sup>3\*</sup>, You Young Song<sup>4\*</sup>, Eunho Yang<sup>15</sup>, Sung Ju Hwang<sup>15</sup>, Jinwoo Shin<sup>1</sup>

¹KAIST, ²Mohamed bin Zaeyed University of Artificial Intelligence, ³Standigm, ⁴Samsung Electronics, ⁵AITRICS, \*this work was partially done while the first author visited Samsung Advanced Institute of Technology

# TL; DR. We propose a framework to consider the commercial availability of reactants for retrosynthesis

#### **Background:** Retrosynthesis

Retrosynthesis aims at finding a synthetic route starting from commercially available reactants to synthesize a target product



**Template-based** approaches first enumerate known reaction templates and then apply a well-matched template into the target product

- Pros: They can provide chemically interpretable predictions
- Cons: They limit the search space to known reaction templates

**Template-free** approaches generate the reactants from scratch using deep generative models

- Pros: They can avoid relying on the reaction templates
- Cons: Their predictions could be either unstable or unavailable

**Motivation:** Retrosynthesis methods are required to consider the availability of reactants and generalize to unseen templates

#### Contribution

We propose a new **selection-based** approach which allows considering the commercial availability of reactants

- We reformulate the task of retrosynthesis as a problem where reactants are selected from a candidate set  $\mathcal C$  of available molecules
- We design two effective selection scores in synthetic and retrosynthetic manners using graph neural networks
- We propose a novel contrastive learning scheme with hard negative mining to overcome a scalability issue while handling a large-scale candidate set
- We demonstrate the effectiveness of our framework in various singleand multi-step retrosynthesis experiments based on the USPTO database

## **Method:** Selection-based Framework (RetCL)

**Notation.**  $\mathcal{R} \to P$  is a chemical reaction where  $\mathcal{R} = \{R_1, \dots, R_n\}$  is a set of reactants and P is a product.  $\mathcal{C}$  is a candidate set of commercially-available molecules.

**Problem:** Find  $\mathcal{R} \subset \mathcal{C}$  which can be synthesized to the target product P



- ①②③ Given P, choose top-T likely reactant-sets  $\mathcal{R}_1, \dots, \mathcal{R}_T$  using beam search based on the sequential selection score  $\psi(R_i|P, \{R_1, \dots, R_{i-1}\})$
- 4 For each  $\mathcal{R}_i$ , evaluate the synthesizability of  $\mathcal{R}_i$  based on  $\phi(P|\mathcal{R}_i)$
- **(5)** Decide the rankings of  $\mathcal{R}_1, \dots, \mathcal{R}_T$  based on the following overall score:

$$\operatorname{score}(P, \mathcal{R}) = \frac{1}{n+2} \left( \max_{\pi \in \Pi} \sum_{i=1}^{n+1} \psi(R_{\pi(i)} | P, \{R_{\pi(1)}, \dots, R_{\pi(i-1)}\}) + \phi(P | \mathcal{R}) \right),$$

**Score design.** We use the cosine similarity using GNNs  $f_{\theta}$ ,  $g_{\theta}$ ,  $h_{\theta}$ :

$$\begin{split} \psi(R|P,\mathcal{R}_{\text{given}}) &= \operatorname{CosSim} \left( f_{\theta}(P) - \sum_{S \in \mathcal{R}_{\text{given}}} g_{\theta}(S), \; h_{\theta}(R) \right), \\ \phi(P|\mathcal{R}) &= \operatorname{CosSim} \left( \sum_{R \in \mathcal{R}} g_{\theta}(R), \; h_{\theta}(P) \right), \end{split}$$

**How to learn** the score functions  $\psi$  and  $\phi$ ?

- We use  $\psi(R_i|P,\mathcal{R}_{< i})$  and  $\phi(P|\mathcal{R})$  as classification scores and learn the classification task of selecting a molecule  $R_i$  or P from  $\mathcal{C}$
- For efficient learning, we replace  $\mathcal C$  by the set  $\mathcal C_{\mathcal B}$  of all molecules in each mini-batch  $\mathcal B$
- For effective learning, we add hard-negatives in  $\mathcal C$  into  $\mathcal C_{\mathcal B}$

## **Experiment**

- RetCL significantly outperforms a previous selection-based approach
- RetCL shows the superiority even if incorporating knowledge of candidates (i.e.,  $\mathcal{C}$ ) into baselines, especially, generalizability under the limited template coverage
- RetCL improves multi-step retrosynthesis performance (i.e., length and cost of discovered synthetic routes) with an existing template-free method

Single-step Retrosynthesis in USPTO-50k

|                              | onigie step itetiosyi             | 1010010  | , ,,,       |             |             |             |        |
|------------------------------|-----------------------------------|----------|-------------|-------------|-------------|-------------|--------|
| Category                     | Method                            | Top-1    | Top-3       | Top-5       | Top-10      | Top-20      | Top-50 |
|                              | Reaction typ                      | e is unk | nown        |             |             |             |        |
|                              | Transformer (Karpov et al., 2019) | 37.9     | 57.3        | 62.7        | _           | -           | -      |
| Template-free Template-based | SCROP (Zheng et al., 2019)        | 43.7     | 60.0        | 65.2        | 68.7        | -           | -      |
|                              | Transformer (Chen et al., 2019)   | 44.8     | 62.6        | 67.7        | 71.1        | -           | -      |
|                              | G2Gs (Shi et al., 2020)           | 48.9     | 67.6        | 72.5        | <b>75.5</b> | -           | -      |
|                              | retrosim (Coley et al., 2017b)    | 37.3     | 54.7        | 63.3        | 74.1        | 82.0        | 85.3   |
| Template-based               | neuralsym (Segler & Waller, 2017) | 44.4     | 65.3        | 72.4        | 78.9        | 82.2        | 83.1   |
|                              | GLN (Dai et al., 2019)            | 52.5     | <b>69.0</b> | <b>75.6</b> | 83.7        | 89.0        | 92.4   |
| Selection-based              | Bayesian-Retro (Guo et al., 2020) | 47.5     | 67.2        | 77.0        | 80.3        | 58.7        | -      |
| Selection-based              | RETCL (Ours)                      | 71.3     | 86.4        | 92.0        | 94.1        | <b>95.0</b> | 96.4   |

Category Method Top-1 Top-5 Top-10 Top-50 Top-100 Top-200

Reaction type is unknown

Transformer (Chen et al. 2019) 59.6 74.3 77.0 79.4 79.5 79.6

| Reaction type is unknown |                                                 |              |                     |                     |                     |                     |                     |  |  |
|--------------------------|-------------------------------------------------|--------------|---------------------|---------------------|---------------------|---------------------|---------------------|--|--|
| Template-free            | Transformer (Chen et al., 2019)<br>RETCL (Ours) | 59.6<br>71.3 | 74.3<br><b>92.0</b> | 77.0<br><b>94.1</b> | 79.4<br><b>96.4</b> | 79.5<br><b>96.7</b> | 79.6<br><b>97.1</b> |  |  |
| Template-based           | d GLN (Dai et al., 2019)                        | 77.3         | 90.0                | 92.5                | 93.3                | 93.3                | 93.3                |  |  |

Evaluation of generalizability by training without reaction types from 6 to 10

|                        |         | Reaction type |             |      |             |      |      |      |      |      |     |
|------------------------|---------|---------------|-------------|------|-------------|------|------|------|------|------|-----|
| Method                 | Average | 1             | 2           | 3    | 4           | 5    | 6    | 7    | 8    | 9    | 10  |
| GLN (Dai et al., 2019) | 39.7    | 84.3          | 92.2        | 70.7 | 59.3        | 89.7 | 0.0  | 0.0  | 0.0  | 0.5  | 0.0 |
| RETCL (Ours)           | 55.6    | 93.9          | <b>97.6</b> | 86.4 | <b>67.0</b> | 95.6 | 59.1 | 11.9 | 18.3 | 26.1 | 0.0 |

Multi-step retrosynthesis using a hybrid model: RetCL+Transformer





RetCL+Transformer