
RetCL: A Selection-based Approach for 
Retrosynthesis via Contrastive Learning

August, 2021.

Hankook Lee1,  Sungsoo Ahn2,  Seung-Woo Seo3,  You Young Song4,
Eunho Yang15,  Sung-Ju Hwang15,  Jinwoo Shin1

1Korea Advanced Institute of Science and Technology
2Mohamed bin Zaeyed University of Artificial Intelligence

3Standigm
4Samsung Electronics

5AITRICS
1



What Is Retrosynthesis?
• Retrosynthesis aims at finding a synthetic route starting from commercially available 

reactants to synthesize a target product 

• It plays an essential role in practical applications by finding a new synthetic path, which can be more cost-
effective or avoid patent infringement

• Challenges:
• One molecule could be synthesized by different combinations of reactants
• Some complex compounds require more than 100 synthesis steps
• The number of reaction types (or rules) is very huge
• Hence, the search space is too vast 2
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Existing Approaches for Retrosynthesis
1. Template-based approaches [1-3]

• A reaction template describes how the chemical reaction occurs among reactants
• Reaction templates can be extracted from a reaction database automatically or encoded by experts

• How do template-based approaches perform retrosynthesis?
1. Construct a set of templates 𝒯 = 𝑇!, 𝑇", … , 𝑇𝒯 by automatic tools or experts
2. Given a product molecule 𝑃, find a well-matched template 𝑇 ∈ 𝒯
3. Obtain a set of reactants by applying the template 𝑇 to the product 𝑃

• Limitation: they limit the search space to known templates and cannot discover novel synthetic routes
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Existing Approaches for Retrosynthesis
2. Template-free approaches [1-4]

• They generate the reactants from scratch without knowledge of reaction templates
• In other words, they consider retrosynthesis as a conditional generation problem such as machine translation
• Note. Molecules can be encoded by graph or string format (SMILES)

• Limitation: they require to search the entire molecular space, and their predictions could be either 
unstable or commercially unavailable
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• Recall. Existing approaches have fundamental limitations:
• Template-based ones cannot generalize to unseen templates
• Template-free ones does not consider the availability of reactants 

• We propose a new selection-based approach considering the availability of reactants
• Assumption: we have a candidate set of commercially available reactants 𝒞
• We reformulate retrosynthesis as the following selection problem:

Benefits over the existing approaches:
• It guarantees the commercial availability of the selected reactants
• It can generalize to unseen reaction templates and find novel synthetic routes

Proposed Method: Selection-based Approach
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Given a target product 𝑃, our goal is to select a set of reactantsℛ = 𝑅!, … , 𝑅 ℛ
from the candidate set 𝒞 (i.e., ℛ ⊂ 𝒞) for synthesizing the product 𝑃
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RetCL: Retrosynthesis via Contrastive Learning
• Recall. We design two selection scores:

• 𝜓 𝑅 𝑃,ℛ!"#$% : score of a reactant 𝑅 given a product 𝑃 and a set of previously selected reactants ℛ&'()*
• 𝜙 𝑃 ℛ : score of a product 𝑃 given a set of reactants ℛ

• How to learn the scores?
• The score functions resemble the classification scores of selecting a reactant or a product
• Given a reaction ℛ, 𝑃 in a database, we consider two classification tasks:
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RetCL: Retrosynthesis via Contrastive Learning
• How to learn the scores? (Cont.)

• The optimization is intractable since 𝒞 contains a large number of candidate molecules
• To resolve this, we approximate 𝒞 with the set of molecules in a mini-batch ℬ

• To further improve approximation, we add hard negatives (i.e., nearest neighbors) into the candidate set

• The nearest neighbors (NN) are defined with respect to the cosine similarity on ℎ* 𝑀 +∈𝒞
• Since computing all embeddings for every iteration is time-consuming, we update the information periodically
• We found that this hard negative mining significantly improves the performance of RetCL
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Experiments
• Experimental setup

• Our models are evaluated on USPTO-50k, which is a standard benchmark for retrosynthesis
• For the candidate set 𝒞, we use all reactants in the entire USPTO database (671k molecules)
• For molecule encoders 𝑓+, 𝑔+, ℎ+, we use a single shared structure2vec [1] and separate residual layers
• For evaluation, we use top-k exact match accuracy, which is widely used in the retrosynthesis literature
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• Effects of components
• Hard negative mining is crucial in contrastive learning
• Considering the forward direction is important in retrosynthesis
• Sum-pooling is more effective than mean-pooling

• Nearest neighbors based on molecule embeddings ℎ, 𝑀
Example A Top 4 nearest neighbors of A Example B Top 4 nearest neighbors of B 
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Experiments
• Single-step retrosynthesis

• Note. Different categories = different assumptions about prior knowledge
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Experiments
• Single-step retrosynthesis

• Note. Different categories = different assumptions about prior knowledge
• It is hard to fairly compare between methods operating under different assumptions

• To alleviate such a concern, we incorporate our prior knowledge of candidates C into the baselines
• How? we simply filter out reactants outside the candidates C from the predictions made by the baselines
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coverage of known templates, i.e.,
upper bound of template-based approaches



Conclusion
• We propose a selection-based approach considering the commercial availability of reactants

• We reformulate the task of retrosynthesis as a problem where reactants are selected from a candidate set 
of available molecules

• We design two effective selection scores in synthetic and retrosynthetic manners using graph neural 
networks

• We propose a novel contrastive learning scheme with hard negative mining to overcome a scalability issue 
while handling a large-scale candidate set

• We demonstrate the effectiveness of our framework in various single- and multi-step retrosynthesis 
experiments based on the USPTO database
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Thank you for your listening!


