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What Is Retrosynthesis?

* Retrosynthesis aims at finding a synthetic route starting from commercially available
reactants to synthesize a target product

Reactants Products

‘\
Synthesis (forward) /Q -
L I3+ 0 ' ¥
Z ~/ + ~/ < .
v Retrosynthesis (backward) S M

* It plays an essential role in practical applications by finding a new synthetic path, which can be more cost-
effective or avoid patent infringement

* Challenges:
* One molecule could be synthesized by different combinations of reactants
* Some complex compounds require more than 100 synthesis steps
* The number of reaction types (or rules) is very huge
* Hence, the search space is too vast



Existing Approaches for Retrosynthesis
1. Template-based approaches [1-3]

* Areaction template describes how the chemical reaction occurs among reactants
* Reaction templates can be extracted from a reaction database automatically or encoded by experts
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Reaction Reaction template

 How do template-based approaches perform retrosynthesis?

1. Construct a set of templates ' = {Tl, T,, ..., TITI} by automatic tools or experts
2. Given a product molecule P, find a well-matched template T € T
3. Obtain a set of reactants by applying the template T to the product P

 Limitation: they limit the search space to known templates and cannot discover novel synthetic routes

[1] Coley et al., Computer-assisted retrosynthesis based on molecular similarity. ACS central science, 3(12):1237-1245, 2017.
[2] Segler & Waller, Neural-symbolic machine learning for retrosynthesis and reaction prediction. Chemistry—A European Journal, 23(25):5966—-5971, 2017.
[3] Dai et al., Retrosynthesis prediction with conditional graph logic network, NeurlIPS, 2019.



Existing Approaches for Retrosynthesis

2. Template-free approaches [1-4]

* They generate the reactants from scratch without knowledge of reaction templates

* In other words, they consider retrosynthesis as a conditional generation problem such as machine translation
* Note. Molecules can be encoded by graph or string format (SMILES)

Input: reactants-reagents (atom-wise tokenization)
Brclccc2..c(cl)clec3clccceccdcdcccccdc3cecln2-clecc2ce(cl)clecceecln2-cleccccl.CCO.

Cclcceecl.0B(0)clecc2cec3ceenc3c2nl.clecc([PH](c2cceec2)(c2cecec2)[Pd]([PH](c2ccecc?)
(c2ccecc2)c2ceceec2)([PH](c2cccec2)(c2ccecc2)c2ceccec2)[PH](c2ccecec2)(c2ccecc2)c2cceec2)ccl

Multi-head attention

Encoder Decoder

— @&

Molecular Transformer clccc(-n

...2c3ccccc3c3cc(-n4c5cec(-
cb6cec7ccc8ccenc8c7n6)cc5c5ccbe7ccccc7c7cccecc7c6cc54)ccc32)ccl

Target: most likely products

 Limitation: they require to search the entire molecular space, and their predictions could be either
unstable or commercially unavailable

[1] Liu et al., Retrosynthetic reaction prediction using neural sequence-to-sequence models. ACS central science, 3(10): 1103-1113, 2017
[2] Karpov et al., A transformer model for retrosynthesis. In International Conference on Artificial Neural Networks, pp. 817—830. Springer, 2019.

[3] Zheng et al., Predicting retrosynthetic reactions using self-corrected transformer neural networks. Journal of Chemical Information and Modeling, 2019.
[4] A graph to graphs framework for retrosynthesis prediction. ICML, 2020.



Proposed Method: Selection-based Approach

* Recall. Existing approaches have fundamental limitations:
* Template-based ones cannot generalize to unseen templates
* Template-free ones does not consider the availability of reactants

* We propose a new selection-based approach considering the availability of reactants
e Assumption: we have a candidate set of commercially available reactants C
* We reformulate retrosynthesis as the following selection problem:

Given a target product P, our goal is to select a set of reactants R = {Rl, e R|R|}
from the candidate set C (i.e., R < C) for synthesizing the product P

Benefits over the existing approaches:
* It guarantees the commercial availability of the selected reactants
* It can generalize to unseen reaction templates and find novel synthetic routes



RetCL: Retrosynthesis via Contrastive Learning
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RetCL: Retrosynthesis via Contrastive Learning

Backward Selection Score: ¥(R|P, Rgiven) = CosSim (fe(P) — Z
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RetCL: Retrosynthesis via Contrastive Learning

Backward Selection Score: 9(R|P, Rgiven) = CosSim (fe(P) - ZSGR .
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RetCL: Retrosynthesis via Contrastive Learning
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RetCL: Retrosynthesis via Contrastive Learning
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RetCL: Retrosynthesis via Contrastive Learning

Backward Selection Score: 9(R|P, Rgiven) = CosSim (fe(P) - ZSGR .
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RetCL: Retrosynthesis via Contrastive Learning

Backward Selection Score: ¢(R|P, Rgiven) = CosSim (fe(P) - Z
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* Using beam search, choose top T reactant-sets R4, ..., Rt
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RetCL: Retrosynthesis via Contrastive Learning

Forward Selection Score:  ¢(P|R) = CosSim (Z go(R), h@(P))
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RetCL: Retrosynthesis via Contrastive Learning

1 n+1
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RetCL: Retrosynthesis via Contrastive Learning

* Recall. We design two selection scores:

. 1/)(R|P, Rgiven) : score of a reactant R given a product P and a set of previously selected reactants Rgiyen
* ¢(P|R) : score of a product P given a set of reactants R

* How to learn the scores?

* The score functions resemble the classification scores of selecting a reactant or a product
* Given a reaction (R, P) in a database, we consider two classification tasks:

Backward P — R Forward R — P
exp(Y(R|P, Rgiven)/T) exp(¢(P|R)/T)

P(R|P, Rgiven,C) = q(P|R,C) =

P Retvens ©) = 7y DO (P, Regzeen) /) ) = o exp (P TRI7)
n+1

Lyackwara (P, R|0,C) = — max > log p(Ry(i| P, RZ,,C) Lsorwara(P,R[0,C) = —logq(P|R,C)
1=1

Ltotal — Ebackward(Pa R‘ea C) "|_ Eforward(Pa R’07 C) 20



RetCL: Retrosynthesis via Contrastive Learning

 How to learn the scores? (Cont.)
* The optimization is intractable since C contains a large number of candidate molecules
* To resolve this, we approximate C with the set of molecules in a mini-batch B

Cs={M | A(R, P) € B such that M = P or M € R}

1
T Z Ebackward(Pa R|¢9, CB) + Eforward(Pa R‘ea CB)

0 —
L0 =15 2

* To further improve approximation, we add hard negatives (i.e., nearest neighbors) into the candidate set
Cg =CpU UMECB {Top-K NN of M from C}

* The nearest neighbors (NN) are defined with respect to the cosine similarity on {hg (M) }ec
e Since computing all embeddings for every iteration is time-consuming, we update the information periodically
* We found that this hard negative mining significantly improves the performance of RetCL
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Experiments

e Experimental setup
* Our models are evaluated on USPTO-50k, which is a standard benchmark for retrosynthesis
* For the candidate set C, we use all reactants in the entire USPTO database (671k molecules)
* For molecule encoders fg, gg, hg, we use a single shared structure2vec [1] and separate residual layers
* For evaluation, we use top-k exact match accuracy, which is widely used in the retrosynthesis literature
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» Effects of components ¢(P|IR) K sum Top-1 Top-10
* Hard negative mining is crucial in contrastive learning j 1 (5)3:2 ;gg
e Considering the forward direction is important in retrosynthesis & 2 709 927
e Sum-pooling is more effective than mean-pooling v j g(l):é gg:g
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 Nearest neighbors based on molecule embeddings hg (M)
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Experiments

* Single-step retrosynthesis
* Note. Different categories = different assumptions about prior knowledge

Category Method Top-1 Top-3 Top-5 Top-10 Top-20 Top-50
Reaction type is unknown
Transformer [Karpov et al., 2019] 37.9 57.3 62.7 . . .
ST SCROP [Zheng et al., 2019] 43.7 60.0 65.2 68.7 - -
E Transformer [Chen et al., 2019] 44.8 62.6 67.7 ¢35 | . -
G2Gs [Shi et al., 2020] 48.9 67.6 g2 755 - -
retrosim [Coley et al., 2017] 315 54.7 63.3 g | 82.0 85.3
Template-based  neuralsym [Segler and Waller, 2017]  44.4 65.3 72.4 78.9 82.2 83.1
GLN [Dai et al., 2019] 52.5 69.0 75.6 83.7 89.0 924
R Bayesian-Retro [Guo et al., 2020] 47.5 672 77.0 80.3 s .
RETCL (Ours) 71.3 86.4 92.0 94.1 95.0 96.4
Reaction type is given as prior
seq2seq [Liu et al., 20171 37.4 524 57.0 61.7 65.9 70.7
: Transformer' [Chen et al., 2019] 541 700 742 77.8 80.4 83.3
T late-f ’
Snpiatesice SCROP [Zheng et al., 2019] 500 748 781  8l.1 i i
G2Gs [Shi et al., 2020] 61.0 81.3 86.0 88.7 - -
retrosim [Coley et al., 2017] 52.9 73.8 81.2 88.1 91.8 92.9
Template-based  neuralsym [Segler and Waller, 2017]  55.3 76.0 81.4 85.1 86.5 86.9
GLN [Dai et al., 2019] 64.2 79.1 85.2 90.0 92.3 93.2
Selection-based Bayesian-Retro [Guo et al., 2020] 55:2 74.1 814 83.5 - -
: RETCL (Ours) 78.9 90.4 93.9 95.2 95.8 96.7
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Experiments

* Single-step retrosynthesis

* Note. Different categories = different assumptions about prior knowledge
* Itis hard to fairly compare between methods operating under different assumptions

* To alleviate such a concern, we incorporate our prior knowledge of candidates C into the baselines
 How? we simply filter out reactants outside the candidates C from the predictions made by the baselines

Prior knowledge Category

Method

Top-1

Top-5 Top-10 Top-50 Top-100  Top-200

Reaction type is unknown

Candidates C Template-free

templates 7" + Candidates ¢ _Template-based

Transformer [Chen et al., 2019] 59.6 74.3 77.0 79.4 79.5 79.6
RETCL (Ours) 713 92.0 94.1 96.4 96.7 97.1
GLN [Dai et al., 2019] T7.3 90.0 92.5 02 93.3 93.3

Reaction type is given as prior

Template-free Transformer [Chen et al., 2019]  68.4 82.4 84.3 85.9 86.0 86.1
P RETCL (Ours) 78.9 93.9 95.2 96.7 97.1 97.5
Template-based GLN [Dai et al., 2019] 82.0 91.7 92.9 93.3 93.3 93.3

coverage of known templates, i.e.,

upper bound of template-based approaches
29



Conclusion

* We propose a selection-based approach considering the commercial availability of reactants

* We reformulate the task of retrosynthesis as a problem where reactants are selected from a candidate set
of available molecules

* We design two effective selection scores in synthetic and retrosynthetic manners using graph neural
networks

* We propose a novel contrastive learning scheme with hard negative mining to overcome a scalability issue
while handling a large-scale candidate set

* We demonstrate the effectiveness of our framework in various single- and multi-step retrosynthesis
experiments based on the USPTO database

Thank you for your listening!
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