

TR; DR: We propose patch-level self-supervision for learning better patch-level representations

Summary

Motivation. Can we improve the quality of patch-level representations of ViTs (architectural characteristic) without human-annotated supervision?

• It can be beneficial to various downstream tasks of a dense prediction type

Contribution. We propose patch-level self-supervision and highlight its importance during pre-training ViTs in a self-supervised manner

• Our method can be incorporated into any image-level self-supervised ViT for learning both global and local information simultaneously

Better Patch-level Representations

Visualization of video object segmentation on the DAVIS 2017 benchmark

• Our method encourages the patch-level representations to learn semantic information of each object. (Incorporated with DINO)

Patch-level Representation Learning for Self-supervised Vision Transformers

Sukmin Yun, Hankook Lee, Jaehyung Kim, Jinwoo Shin Korea Advanced Institute of Science and Technology (KAIST)

- Momentum network
- Online network

Patch-level Self-supervision (SelfPatch)

Key Idea. Adjacent patches often share a common semantic context

- But, we do not know exactly which patches are positive
- We propose positive matching process and aggregation module

Positive Matching Process. Selecting candidates of semantically similar patches in the neighborhood

• We take *top-k* positive patches $\{\mathbf{x}^{(j)}\}_{j \in \mathcal{P}^{(i)}}$ based on the cosine similarity scores s(i, j) as follow

$$s(i,j) = f_{\theta}^{(i)}(\mathbf{x})^{\top} f_{\theta}^{(j)}(\mathbf{x}) / ||f_{\theta}^{(i)}(\mathbf{x})|| f_{\theta}^{(i)}(\mathbf{x}) / ||f_{\theta}^{(i)}(\mathbf{x})$$

where $\mathcal{P}^{(i)}$ is a set of patch indices of *top-k* patches in *i*-th neighborhood $\mathcal{N}^{(i)}$

- Image patches $\{\mathbf{x}^{(i)}\}_{i=1}^{N}$ of an image \mathbf{x}
- $f_{\theta}^{(i)}(\mathbf{x})$ is the final representation of the *i*-th patch

Aggregation Module. Summarizing selected positive patches via an attentionbased module to construct patch-level self-supervision $\mathbf{y}^{(i)}$

- Some of them might still be noisy (*e.g.*, not positive) \rightarrow Denoising effect!
- [CLS] token in aggregation module attends the selected positive patches

$|f_{\theta}^{(j)}(\mathbf{x})||_{2}||f_{\theta}^{(j)}(\mathbf{x})||_{2}|$

Experimental Results

		COCO Detection		COCO Segmentation			ADE20K Segmentation		DAVIS Segmentation				
Method	Backbone	AP ^{bb}	AP_{50}^{bb}	AP_{75}^{bb}	AP ^{mk}	AP_{50}^{mk}	AP_{75}^{mk}	mIoU	aAcc	mAcc	$(\mathcal{J}\&\mathcal{F})_m$	\mathcal{J}_m	\mathcal{F}_m
MoCo-v2	ResNet50	38.9	59.2	42.4	35.5	56.2	37.8	35.8	77.6	45.1	55.5	56.0	55.0
SwAV	ResNet50	38.5	60.4	41.4	35.4	57.0	37.7	35.4	77.5	44.9	57.4	57.6	57.3
DenseCL	ResNet50	40.3	59.9	44.3	36.4	57.0	39.2	37.2	78.5	47.1	50.7	52.6	48.9
ReSim	ResNet50	40.3	60.6	44.2	36.4	57.5	38.9	36.6	78.4	46.4	49.3	51.2	47.3
DetCo	ResNet50	40.1	61.0	43.9	36.4	58.0	38.9	37.3	78.4	46.7	56.7	57.0	56.4
MoCo-v3	ViT-S/16	39.8	62.6	43.1	37.1	59.6	39.2	35.3	78.9	45.9	53.5	51.2	55.9
MoBY	ViT-S/16	41.1	63.7	44.8	37.6	60.3	39.8	39.5	79.9	50.5	54.7	52.0	57.3
DINO	ViT-S/16	40.8	63.4	44.2	37.3	59.9	39.5	38.3	79.0	49.4	60.7	59.1	62.4
+ SelfPatch (ours)	ViT-S/16	42.1	64.9	46.1	38.5	61.3	40.8	41.2	80.7	52.1	62.7	60.7	64.7

Our method significantly improves DINO in various detection (COCO object detection) and segmentation (COCO instance, ADE20K semantic, DAVIS 2017 video object segmentation) tasks on ImageNet-1k pre-training

Ablation Study

	Neighbors $\mathcal{N}^{(i)}$	Matching	Agg	$(\mathcal{J}\&\mathcal{F})_m$	Method	Backbone	Negative	$(\mathcal{J}\&\mathcal{F})_n$
(a)	-	-	-	55.1	MoBY	ViT-Ti/16	-	54.1
(b)	3×3	k = 4	1	57.0	57.0 + SelfPatch (ours)	ViT-Ti/16	-	58.4
	5×5	k = 4	• •	56.5	+ SelfPatch (ours)	ViT-Ti/16	\checkmark	58.9
	All patches	k = 4	\checkmark	47.3	MoBY	Swin-T	-	50.8
(c)	3×3	k = 1	\checkmark	56.3	+ SelfPatch (ours)	Swin-T	\checkmark	56.4
	3 imes 3	k = 2	\checkmark	56.4	DINO	ViT-Ti/16	-	55.1
	3 imes 3	k = 4	\checkmark	57.0	+ SelfPatch (ours)	ViT-Ti/16	-	57.0
	3 imes 3	k = 8	\checkmark	56.5	DINO	ViT-Ti/8	_	61.6
(d)	3 imes 3	k = 4	-	51.4	+ SelfPatch (ours)	ViT-Ti/8	-	65.8
	3 imes 3	k = 4	\checkmark	57.0				

• It also consistently outperforms the SOTA CNN & ViT-based baselines

All models are pre-trained on COCO and evaluated on DAVIS 2017 benchmark

Component Analysis (Left). We validate the individual effects of components: (b) Neighboring Patches $(3 \times 3, 5 \times 5, all patches)$, (c) Positive Matching $(k \in \{1, 2, 4, 8\})$ and (d) Aggregation Module (avg. pooling) on ViT-Ti/16 **Compatibility Analysis (Right).** We validate the compatibility of our method with (a) Image-level Self-supervision (MoBY), (b) Transformer-based Architecture (Swin Transformer), and (c) Patch-size (8×8)